
BayesWipe: A Multimodal System for Data Cleaning and Consistent Query

Answering on Structured BigData

Sushovan De∗ Yuheng Hu∗ Yi Chen† Subbarao Kambhampati∗

∗Department of Computer Science and Engineering

Arizona State University

Tempe, AZ 85281, USA

{ sushovan, yuhenghu, rao } @asu.edu

†School of Management

New Jersey Institute of Technology

Newark, NJ 07102, USA

yi.chen@njit.edu

Abstract—Recent efforts in data cleaning of structured data
have focused exclusively on problems like data deduplication,
record matching, and data standardization; none of these focus
on fixing incorrect attribute values in tuples. Correcting values
in tuples is typically performed by a minimum cost repair of
tuples that violate static constraints like CFDs (which have to be
provided by domain experts, or learned from a clean sample of
the database). In this paper, we provide a method for correcting
individual attribute values in a structured database using a
Bayesian generative model and a statistical error model learned
from the noisy database directly. We thus avoid the necessity
for a domain expert or clean master data. We also show how
to efficiently perform consistent query answering using this
model over a dirty database, in case write permissions to the
database are unavailable. We evaluate our methods over both
synthetic and real data.

Keywords-databases; web databases; data cleaning; query
rewriting; uncertainty

I. INTRODUCTION

Although data cleaning has been a long standing problem,

it has become critically important again because of the

increased interest in big data and web data. Most of the

focus of the work on big data has been on the volume,

velocity, or variety of the data; however, an important part

of making big data useful is to ensure the veracity of the

data. Enterprise data is known to have a typical error rate of

1–5% [1] (error rates of up to 30% have been observed).

This has led to renewed interest in cleaning of big data

sources, where manual data cleansing tasks are seen as

prohibitively expensive and time-consuming [2], or the data

has been generated by users and cannot be implicitly trusted

[3]. Among the various types of big data, the need to

efficiently handle large scaled structured data that is rife with

inconsistency and incompleteness is also more significant

than ever. Indeed, multiple studies, such as [4] emphasize

the importance of effective, efficient methods for handling

“dirty big data”.

Although this problem has received significant attention

over the years in the traditional database literature, the state-

of-the-art approaches fall far short of an effective solution for

big data and web data. Traditional methods include outlier

detection [5], noise removal [6], entity resolution [7], [6],

and imputation [8]. Although these methods are efficient in

their own scenarios, their dependence on clean master data

is a significant drawback.

Specifically, state of the art approaches (e.g., [9], [10],

[11]) attempt to clean data by exploiting patterns in the data,

which they express in the form of conditional functional

dependencies (or CFDs). However, these approaches depend

on the availability of a clean data corpus or an external

reference table to learn data quality rules or patterns before

fixing the errors in the dirty data. Systems such as ConQuer

[12] depend upon a set of clean constraints provided by

the user. Such clean corpora or constraints may be easy to

establish in a tightly controlled enterprise environment but

are infeasible for web data and big data. One may attempt

to learn data quality rules directly from the noisy data.

Unfortunately however, our experimental evaluation shows

that even small amounts of noise severely impairs the ability

to learn useful constraints from the data.

To avoid dependence on clean master data, in this paper,

we propose a novel system called BayesWipe1 that assumes

that a statistical process underlies the generation of clean

data (called the data source model) as well as the corruption

of data (which we call the data error model). The noisy

data itself is used to learn the generative and error model

parameters, eliminating dependence on clean master data.

Then, by treating the clean value as a latent random variable,

BayesWipe leverages these two learned models and auto-

matically infers its value through a Bayesian estimation. We

model the data source model through a Bayesian network,

and the error process as a mixture of error features (to handle

typo-related, substitution, and omission errors). We make

the assumption that errors in each attribute are generated

independently.

We designed BayesWipe so that it can be used in two

different modes: a traditional offline cleaning mode, and a

novel online query processing mode. The offline cleaning

mode of BayesWipe follows the classical data cleaning

model, where the entire database is accessible and can be

cleaned in situ. This mode is particularly useful for cleaning

1A demo of the system can be found at http://bayeswipe.sushovan.de.

data crawled from the web, or aggregated from various noisy

sources.

The online query processing mode of BayesWipe is

motivated by big data scenarios where, due to volume and

velocity of data or access restrictions, it is impractical to

create a local copy of the data and clean it offline. In such

cases, the best way to obtain clean answers is to clean

the resultset as we retrieve it, which also provides us the

opportunity of improving the efficiency of the system, since

we can now ignore entire portions of the database which are

likely to be unclean or irrelevant to the top-k. BayesWipe
uses a query rewriting system that enables it to efficiently

retrieve only those tuples that are important to the top-k
result set. Since write access and clean master data is rarely

available in big-data scenarios, this method is particularly

suitable for getting clean results.

To summarize our contributions, we:

• Propose that data cleaning should be done using a

principled, probabilistic approach.

• Develop a novel algorithm following those principles,

which uses a Bayes network as the generative model

and maximum entropy as the error model of the data.

• Develop novel query rewriting techniques so that this

algorithm can also be used in a big data scenario.

• Empirically evaluate the performance of our algorithm

using both controlled and real datasets.

The rest of the paper is organized as follows. We be-

gin by discussing the related work and then describe the

architecture of BayesWipe in the next section, where we

also present the overall algorithm. Section IV describes the

learning phase of BayesWipe, where we find the generative

and error models. Section V describes the offline cleaning

mode, and the next section details the query rewriting

and online data processing. We describe the results of our

empirical evaluation in Section VIII, and then conclude

by summarizing our contributions. Further details about

BayesWipe can be found in the thesis [13].

II. RELATED WORK

Data Cleaning: The current state of the art in data cleaning

focuses on deterministic dependency relations such as FD,

CFD, and INDs [14], [10], [15]. However, the precision and

recall of cleaning data with CFDs completely depends on

the quality of the set of dependencies used for the cleaning.

As our experiments show, learning the dependencies from

dirty data produces very unsatisfactory results.

Even if a curated set of integrity constraints are provided,

existing methods do not use a probabilistically principled

method of choosing a candidate correction. They resort

to either heuristic based methods, finding an approximate

algorithm for the least-cost repair of the database [16], [9],

[17]; using a human-guided repair [18], or sampling from a

space of possible repairs [19]. More recently, there has been

work investigating the relative accuracy of tuple attributes

Data Source

Database

Sampler

Data source

model

Error

Model

Candidate

Set Index

Find best candidate

for every tuple

Query Rewriting

Clean

Data

Model Learning Offline Cleaning

Online Cleaning

Result Ranking

OR

Figure 1: The architecture of BayesWipe. Our framework

learns both data source model and error model from the raw

data during the model learning phase. It can perform offline

cleaning or query processing to provide clean data.

[20], and the relative confidence in tuple attribute values

vs. the constraints that are known to hold [21], [22]. On

the other hand, BayesWipe provides confidence numbers

to each of the repairs, which is the posterior probability (in

a Bayesian sense) of the corrected tuple given the source

and error models.

To our knowledge, there is no previous work that formally

proposes and learns an error model over relational data that

takes care of substitutions, deletions and typos together.

Query Rewriting

The query rewriting part of this paper is inspired

by the QPIAD system [23], but significantly improves

upon it. QPIAD performed query rewriting over incom-

plete databases using approximate functional dependencies

(AFD), and only cleaned data with null values, not wrong

values. The problem we are attempting to solve in this paper

would not be solvable by QPIAD, since it assumes any

values present in the database are completely correct and

trustworthy.

There is recent work that performs consistent query an-

swering over a database with primary-key constraint viola-

tions [24]. Arenas et al. show [16] a method to generate

rewritten queries to obtain clean tuples from an inconsistent

database. However, the query rewriting algorithm in that

paper is driven by a set of curated deterministic integrity

dependencies, and additionally, they do not use generative

or error models.

III. BAYESWIPE OVERVIEW

BayesWipe views the data cleaning problem as a sta-

tistical inference problem over the structured text data. Let

D = {T1, ..., Tn} be the input structured data which contains

a number of corruptions. Ti ∈ D is a tuple with m attributes

{A1, ..., Am} which may have one or more corruptions in

its attribute values. Given a candidate replacement set C for

a possibly corrupted tuple T in D, we can clean the database

Make

Model

Condition

Engine

Drivetrain

Car Type

Year

Door

(a) Auto dataset

occupation

gender working-

class

filing-status

education

marital status

country

race

(b) Census dataset

Figure 2: The learned Bayes networks

by replacing T with the candidate clean tuple T ∗ ∈ C
that has the maximum Pr(T ∗|T). Using Bayes rule (and

dropping the common denominator), we can rewrite this to

T ∗
best = argmax[Pr(T |T ∗)Pr(T ∗)] (1)

For online query processing we take the user query Q∗,

and find the relevance score of a tuple T as

Score(T) =
∑

T∗∈C

Pr(T ∗)
︸ ︷︷ ︸

source model

Pr(T |T ∗)
︸ ︷︷ ︸

error model

R(T ∗|Q∗)
︸ ︷︷ ︸

relevance

(2)

While the relevance function R(T ∗|Q∗) can take on various

forms, in this paper we use a binary relevance model —

if the latent true tuple T ∗ matches user’s query Q∗, the

relevance is counted as 1, otherwise it is 0. The score is

weighted by the likelihood of T ∗ being the actual (true)

tuple.

Architecture: Figure 1 shows the system architecture for

BayesWipe. During the model learning phase (Section IV),

we first obtain a sample database by sending some queries

to the database. On this sample data, we learn the generative

model of the data as a Bayes network (Section IV-A).

In parallel, we define and learn an error model which

incorporates common kinds of errors (Section IV-B). We

also create an index to quickly propose candidate T ∗s.

We can then choose to do either offline cleaning (Sec-

tion V) or online query processing (Section VI), as per the

scenario. In the offline cleaning mode, we iterate over all

the tuples in the database and clean them one by one. In

the online query processing mode, we obtain a query from

the user, and do query rewriting in order to find a set of

queries that are likely to retrieve a set of highly relevant

tuples. We execute these queries and re-rank the results, and

then display them.

In Algorithms 1 and 2, we present the overall algorithm

for BayesWipe. In the offline mode, we show how we

iterate over all the tuples in the dirty database, D and

replace them with cleaned tuples. In the query processing

mode, the first three operations are performed offline, and

the remaining operations show how the tuples are efficiently

retrieved from the database, ranked and displayed to the user.

Algorithm 1: The algorithm for offline data cleaning

Input: D, the dirty dataset.

BN ← Learn Bayes Network (D)

foreach Tuple T ∈ D do
C ← Find Candidate Replacements (T)

foreach Candidate T ∗ ∈ C do
P (T ∗)← Find Joint Probability (T ∗, BN)

P (T |T ∗)← Error Model (T, T ∗)
end

T ← arg max
T∗∈C

P (T ∗)P (T |T ∗)

end

Algorithm 2: The algorithm for online query processing.

Input: D, the dirty dataset

Input: Q, the user’s query

S ← Sample the source dataset D
BN ← Learn Bayes Network (S)

ES ← Learn Error Statistics (S)

R← Query and score results (Q,D,BN)

ESQ← Get expanded queries (Q)

foreach Expanded query E ∈ ESQ do
R← R∪ Query and score results (E,D,BN)

RQ← RQ∪ Get all relaxed queries (E)
end

Sort(RQ) by expected relevance, using ES
while top-k confidence not attained do

B ← Pick and remove top RQ
R← R∪ Query and score results (B,D,BN)

end

Sort(R) by score

return R

IV. MODEL LEARNING

This section details the process by which we estimate the

components of Equation 2: the data source model Pr(T ∗)
and the error model Pr(T |T ∗)

A. Data Source Model

The data that we work with can have dependencies among

various attributes (e.g., a car’s engine depends on its make).

Therefore, we represent the data source model as a Bayes

network, since it naturally captures relationships between

the attributes via structure learning and infers probability

distributions over values of the input tuples.

Constructing a Bayes network over D requires two steps:

first, the induction of the graph structure of the network,

which encodes the conditional independences between the

m attributes of D’s schema; and second, the estimation

of the parameters of the resulting network. The resulting

model allows us to compute probability distributions over

an arbitrary input tuple T .

Whenever the underlying patterns in the source database

changes, we have to learn the structure and parameters of

the Bayes network again. In our scenario, we observed that

the structure of a Bayes network of a given dataset remains

constant with small perturbations, but the parameters (CPTs)

change more frequently. As a result, we spend a larger

amount of time learning the structure of the network with a

slower, but more accurate tool, Banjo [25]. Figures 2a and 2b

show automatically learned structures for two data domains.

The learned structure seems to be intuitively correct, since

the nodes that are connected (for example, ‘country’ and

‘race’ in Figure 2b) are expected to be highly correlated2.

Then, given a learned graphical structure G of D, we

can estimate the conditional probability tables (CPTs) that

parameterize each node in G using a faster package called

Infer.NET [27]. This process of inferring the parameters is

run offline, but more frequently than the structure learning.

Once the Bayesian network is constructed, we can infer

the joint distributions for arbitrary tuple T , which can

be decomposed to the multiplication of several marginal

distributions of the sets of random variables, conditioned

on their parent nodes depending on G.

B. Error Model

Having described the data source model, we now turn

to the estimation of the error model Pr(T |T ∗) from noisy

data. There are many types of errors that can occur in

data. We focus on the most common types of errors that

occur in data that is manually entered by naı̈ve users: typos,

deletions, and substitution of one word with another. We also

make an additional assumption that error in one attribute

does not affect the errors in other attributes. This is a

reasonable assumption to make, since we are allowing the

data itself to have dependencies between attributes, while

only constraining the error process to be independent across

attributes. With these assumptions, we are able to come up

with a simple and efficient error model, where we combine

the three types of errors using a maximum entropy model.

Given a set of clean candidate tuples C where T ∗ ∈ C,

our error model Pr(T |T ∗) essentially measures how clean

T is, or in other words, how similar T is to T ∗.

Edit distance similarity: This similarity measure is used to

detect spelling errors. Edit distance between two strings TAi

and T ∗
Ai

is defined as the minimum cost of edit operations

applied to dirty tuple TAi
transform it to clean T ∗

Ai
. Edit

operations include character-level copy, insert, delete and

substitute. The cost for each operation can be modified as

required; in this paper we use the Levenshtein distance,

which uses a uniform cost function. This gives us a distance,

which we then convert to a probability using [28]:

fed(TAi
, T ∗

Ai
) = exp{−costed(TAi

, T ∗
Ai
)} (3)

2Note that the direction of the arrow in a Bayes network does not
necessarily determine causality, see Chapter 14 from Russel and Norvig
[26].

Distributional similarity feature: This similarity measure

is used to detect both substitution and omission errors. We

propose a context-based similarity measure called Distribu-

tional similarity (fds), which is based on the probability of

replacing one value with another under a similar context

[29]. Formally, for each string TAi
and T ∗

Ai
, we have:

fds(TAi
, T ∗

Ai
) =

∑

c∈C(TAi
,T∗

Ai
)

Pr(c|T ∗
Ai
)Pr(c|TAi

)Pr(TAi
)

Pr(c)
(4)

In this equation, C is the ‘context’, which is a set of attribute

values that co-occur (appear in the same tuple) with TAi

and T ∗
Ai

. The conditional probability Pr(c|T ∗
Ai
) is given by

(#(c, T ∗
Ai
) + µ)/#(T ∗

Ai
), which measures the probability

that the value c occurs in a tuple given the value T ∗
Ai

occurs

in the same tuple; with a Laplacian smoothing factor µ.

Unified error model: In practice, we do not know be-

forehand which kind of error has occurred for a partic-

ular attribute; we need a unified error model which can

accommodate all three types of errors (and be flexible

enough to accommodate more errors when necessary). For

this purpose, we use the well-known maximum entropy

framework [30] to leverage both the similarity measures,

(Edit distance fed and distributional similarity fds). For each

attribute of the input tuple T and T ∗, we have the unified

error model Pr(T |T ∗) given by:

1

Z
exp

{

α
m∑

i=1

fed(TAi
, T ∗

Ai
) + β

m∑

i=1

fds(TAi
, T ∗

Ai
)

}

(5)

where α and β are the weight of each feature, m is the

number of attributes in the tuple. The normalization factor

is Z =
∑

T∗ exp {
∑

i λifi(T
∗, T)}.

C. Finding the Candidate Set

The set of candidate tuples, C(T) for a given tuple T are

the possible replacement tuples that the system considers as

possible corrections to T . The larger the set C is, the longer

it will take for the system to perform the cleaning. If C
contains many unclean tuples, then the system will waste

time scoring tuples that are not clean to begin with.

An efficient approach to finding a reasonably clean C(T)
is to consider the set of all the tuples in the sample database

that differ from T in not more than j attributes. However,

even with j = 3, the naı̈ve approach of constructing C from

the sample database directly is too time consuming, since

it requires one to go through the sample database in its

entirety once for every result tuple encountered. To make

this process faster, we create indices over (j+1) attributes.

If any candidate tuple T ∗ differs from T in less than or

equal to j attributes, then it will be present in at least one

of these (j + 1) indices, since we created j + 1 of them

(pigeon hole principle). These j+1 indices are created over

those attributes that have the highest cardinalities, such as

Make and Model (as opposed to attributes like Condition

and Doors which can take only a few values). This ensures

that the set of tuples returned from the index would be small

in number.

For every possibly dirty tuple T in the database, we go

over each such index and find all the tuples that match the

corresponding attribute. The union of all these tuples is then

examined and the candidate set C is constructed by keeping

only those tuples from this union set that do not differ from

T in more than j attributes. Thus we can be sure that by

using this method, we have obtained the entire set C 3.

V. OFFLINE CLEANING

A. Cleaning to a Deterministic Database

In order to clean the data in situ, we first use the

techniques of the previous section to learn the data source

model, the error model and create the index. Then, we iterate

over all the tuples in the database and use Equation 1 to

find the T ∗ with the best score. We then replace the tuple

with that T ∗, thus creating a deterministic database using

the offline mode of BayesWipe.

1) Setting the parameter: Recall from Section IV-B that

there are parameters in the error model called α and β, which

need to be set. Interestingly, in addition to controlling the rel-

ative weight given to the various features in the error model,

these parameters can be used to control overcorrection by

the system.

Overcorrection: Any data cleaning system is vulnerable to

overcorrection, where a legitimate tuple is modified by the

system to an unclean value. Overcorrection can have many

causes. In a traditional, deterministic system, overcorrection

can be caused by erroneous rules learned from infrequent

data. For example, certain makes of cars are all owned by the

same conglomerate (GM owns Chevrolet). In a misguided

attempt to simplify their inventory, a car salesman might list

all the cars under the name of the conglomerate. This may

provide enough support to learn the wrong rule (Malibu →
GM).

Typically, once an erroneous rule has been learned, there

is no way to correct it or ignore it without a lot of oversight

from domain experts. However, BayesWipe provides a way

to regulate the amount of overcorrection in the system with

the help of a ‘degree of change’ parameter. Without loss of

generality, we can rewrite Equation 5 to the following:

Pr(T |T ∗) =
1

Z
exp

{

γ
(

δ

m∑

i=1

fed(TAi
, T ∗

Ai
)

+ (1− δ)

m∑

i=1

fds(TAi
, T ∗

Ai
)
)}

Since we are only interested in their relative weights, the

parameters α and β have been replaced by δ and (1−δ) with

3There is a small possibility that the true tuple T
∗ is not in the sample

database at all. This probability can be reduced by choosing a larger sample
set. In future work, we will expand the strategy of generating C to include
all possible k-repairs of a tuple.

the help of a normalization constant, γ. This parameter, γ,

can be used to modify the degree of variation in Pr(T |T ∗).
High values of γ imply that small differences in T and

T ∗ cause a larger difference in the value of Pr(T |T ∗),
causing the system to give higher scores to the original tuple

(compared to a modified tuple).

VI. QUERY REWRITING FOR ONLINE QUERY

PROCESSING

In this section we extend the techniques of the previous

section so that it can be used in an online query processing

method where the result tuples are cleaned at query time.

Certain tuples that do not satisfy the query constraints, but

are relevant to the user, need to be retrieved, ranked and

shown to the user. The process also needs to be efficient,

since the time that the users are willing to wait before

results are shown to them is very small. We show our query

rewriting mechanisms aimed at addressing both.

We begin by executing the user’s query (Q∗) on the

database. We store the retrieved results, but do not show

them to the user immediately. We then find rewritten queries

that are most likely to retrieve clean tuples. We do that in

a two-stage process: we first expand the query to increase

the precision, and then relax the query by deleting some

constraints (to increase the recall).

A. Increasing the precision of rewritten queries

We can improve precision by adding relevant constraints

to the query Q∗ given by the user. For example, when a user

issues the query Model = Civic, we can expand the query to

add relevant constraints Make = Honda, Country = Japan,
Size = Mid-Size. These additions capture the essence of

the query — because they limit the results to the specific

kind of car the user is probably looking for. These expanded

structured queries generated from the user’s query are called

ESQs.

Each user query Q∗ is a select query with one or more

attribute-value pairs as constraints. In order to create an

ESQ, we will have to add highly correlated constraints to

Q∗.

Searching for correlated constraints to add requires

Bayesian inference, which is an expensive operation. There-

fore, when searching for constraints to add to Q∗, we restrict

the search to the union of all the attributes in the Markov

blanket [31]. The Markov blanket of an attribute comprises

its children, its parents, and its children’s other parents. It

is the set of attributes whose value being given, the node

becomes independent of all other nodes in the network.

Thus, it makes sense to consider these nodes when finding

correlated attributes. This correlation is computed using the

Bayes Network that was learned offline on a sample database

(recall the architecture of BayesWipe in Figure 1.)

Given a Q∗, we attempt to generate multiple ESQs that

maximizes both the relevance of the results and the coverage

of the queries of the solution space.

Note that if there are m attributes, each of which can

take n values, then the total number of possible ESQs is

nm. Searching for the ESQ that globally maximizes the

objectives in this space is infeasible; we therefore approx-

imately search for it by performing a heuristic-informed

search. Our objective is to create an ESQ with m attribute-

value pairs as constraints. We begin with the constraints

specified by the user query Q∗. We set these as evidence in

the Bayes network, and then query the Markov blanket of

these attributes for the attribute-value pairs with the highest

posterior probability given this evidence. We take the top-k
attribute-value pairs and append them to Q∗ to produce k
search nodes, each search node being a query fragment. If Q
has p constraints in it, then the heuristic value of Q is given

by Pr(Q)m/p. This represents the expected joint probability

of Q when expanded to m attributes, assuming that all the

constraints will have the same average posterior probability.

We expand them further, until we find k queries of size m
with the highest probabilities.

B. Increasing the recall

Adding constraints to the query causes the precision of

the results to increase, but reduces the recall drastically.

Therefore, in this stage, we choose to delete some constraints

from the ESQs, thus generating relaxed queries (RQ).

Notice that tuples that have corruptions in the attribute

constrained by the user can only be retrieved by relaxed

queries that do not specify a value for those attributes.

Instead, we have to depend on rewritten queries that contain

correlated values in other attributes to retrieve these tuples.

Using relaxed queries can be seen as a trade-off between

the recall of the resultset and the time taken, since there

are an exponential number of relaxed queries for any given

ESQ. As a result, an important question is the choice of

RQs to execute. We take the approach of generating every

possible RQ, and then ranking them according to their

expected relevance. This operation is performed entirely on

the learned error statistics, and is thus very fast.

We score each relaxed query by the expected relevance

of its result set.

Rank(q) = E

(∑

Tq
Score(Tq|Q

∗)

|Tq|

)

where Tq are the tuples returned by a query q, and Q∗ is

the user’s query. Executing an RQ with a higher rank will

have a more beneficial result on the result set because it will

bring in better quality result tuples. Estimating this quantity

is difficult because we do not have complete information

about the tuples that will be returned for any query q. The

best we can do, therefore, is to approximate this quantity.

Let the relaxed query be Q, and the expanded query

that it was relaxed from be ESQ. We wish to estimate

E[P (T |T ∗)] where T are the tuples returned by Q. Using the

attribute-error independence assumption, we can rewrite that

as
∏m

i=0 Pr(T.Ai|T
∗.Ai), where T.Ai is the value of the i-

th attribute in T. Since ESQ was obtained by expanding

Q∗ using the Bayes network, it has values that can be

considered clean for this evaluation. Now, we divide the m
attributes of the database into 3 classes: (1) The attribute

is specified both in ESQ and in Q. In this case, we set

Pr(T.Ai|T
∗.Ai) to 1, since T.Ai = T ∗.Ai. (2) The attribute

is specified in ESQ but not in Q. In this case, we know

what T ∗.Ai is, but not T.Ai. However, we can generate

an average statistic of how often T ∗.Ai is erroneous by

looking at our sample database. Therefore, in the offline

learning stage, we precompute tables of error statistics for

every T ∗ that appears in our sample database, and use that

value. (3) The attribute is not specified in either ESQ or Q.

In this case, we know neither the attribute value in T nor

in T ∗. We, therefore, use the average error rate of the entire

attribute as the value for Pr(T.Ai|T
∗.Ai). This statistic is

also precomputed during the learning phase. This product

gives the expected rank of the tuples returned by Q.

C. Terminating the process

We begin by looking at all the RQs in descending order

of their rank. If the current k-th tuple in our resultset has

a relevance of λ, and the estimated rank of the Q we are

about to execute is R(Tq|Q), then we stop evaluating any

more queries if the probability Pr(R(Tq|Q) > λ) is less

than some user defined threshold P . This ensures that we

have the true top-k resultset with a probability P .

VII. MAP-REDUCE FRAMEWORK

BayesWipe is most useful for big-data related scenarios.

The online mode of BayesWipe already works for big data

scenarios by optimising the rewritten queries it issues. Now,

we show that the offline mode can also be optimized for

a big-data scenario by implementing it as a Map-Reduce

application.

A. Simple Approach

The simplest approach to parallelizing the tuples is to run

the first phase (the learning phase) on a single machine.

Then, a copy of the bayes network (structure and CPTs),

the error statistics, and the candidate index can be sent to

a number of other machines. Each of those machines also

receives a fraction of the input data. With the help of the

generative model and the input data, it can then clean the

tuples, and then create the output.

The problem with this approach is that in a truly big

data scenario, the candidate index can become very large.

Indeed, as the number of tuples increases, the size of the

domain of each attribute also increases (see Figure 4a for

1 shard). Further, the number of different combinations,

and the number of erroneous values for each attribute also

increase (Figure 4b). All of this results in a rather large

candidate index. Transmitting and using the entire index on

0

2

4

6

0%

10%

20%

30%

40%

50%

0 5 10 15 20 25 30 35 40

N
u

m
 C

F
D

s
le

a
rn

e
d

%
 T

u
p

le
s

C
le

a
n

e
d

Noise Percent

BayesWipe CFD #CFDs

(a) % performance of BayesWipe com-
pared to CFD, for the used-car dataset.

0%

10%

20%

30%

40%

50%

0

1000

2000

3000

4000

3 4 5 10 15 20 25 30 35
Percentage of noise

Net Tuples Cleaned

Percent Cleaned

(b) % net corrupt values cleaned, car data-
base

0

40

80

120

160

200

2 2.5 3 3.5 4 4.5 5 5.5 6

N
u

m
b

e
r

o
f

v
a

lu
e

s

Distributional Similarity Weight

Values Corrected

False Positives

Cleanliness Gain

(c) Net corrections vs γ. (The x-axis val-
ues show the un-normalized distributional
similarity weight, which is simply γ×3/5.)

Figure 3: Offline cleaning of BayesWipe

each mapper node is wasteful of both network, memory, (and

if swapped out, disk resources).

B. Improved Approach

In order to split both the input tuples and the candidate

index, we use a two-stage approach. In the first stage, we run

a map-reduce that splits the problem into multiple shards,

each shard having a small fraction of the candidate index.

The second stage is a simple map-reduce that picks the best

output from stage 1 for each input tuple.

Stage 1: Given an input tuple T and a set of candidate

tuples, the T ∗s, suppose the candidate index is created on k
attributes, A1...Ak. We can say that for every tuple T , and

one of its candidate tuples T ∗, they will have at least one

matching attribute ai from this set. We can use this common

element ai to predict which shards the candidate T ∗s might

be available in. We therefore, send the tuple T to each shard

that matches the hash of the value ai.
In the reducer, the similarity computation and prior com-

putation part of BayesWipe is run. Since each reducer only

has a fraction of the candidate index (the part that matches

A1 = a1, for instance), it can hold it in memory and

computation is quite fast. Each reducer produces a pair

(T1, (T
∗
1 , score)).

Stage 2: This stage is a simple max calculation. The

mapper does nothing, it simply passes on the key-value

pair (T1, (T
∗
1 , score)) that was generated in the previous

Map-Reduce job. Notice that the key of this pair is the

original, dirty tuple T1. The Map-Reduce architecture thus

automatically groups together all the possible clean versions

of T1 along with their scores. The reducer picks the best

T* based on the score (using a simple max function), and

outputs it to the database.

C. Results of This Strategy

In Figure 4a and Figure 4b we can see how this map

reduce strategy helps in reducing the memory footprint of

the reducer. First, we plot the size of the index that needs

to be held in each node as the number of tuples in the input

increases. The topmost curve shows the size of index in bytes

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 20 40 80 100 120 140

B
y

te
s

in
 o

n
e

 s
h

a
rd

number of tuples

none 2 3 4 5

(a) vs the Number of Tuples (in
Thousands) in the Dataset, for
Various Number of Shards.

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40

B
y

te
s

in
 o

n
e

 s
h

a
rd

Noise percentage

none 2 3 4 5

(b) vs the Noise in the Dataset,
for Various Number of Shards.

Figure 4: Map-Reduce index sizes

if there was no sharding - as expected, it increases sharply.

The other curves show how the size of the index in the one of

the nodes varies for the same dataset sizes. From the graph,

it can be seen that as the number of tuples increases, the

size of the index grows at a lower rate when the number of

shards is increased. This shows that increasing the number

of reduce nodes is a credible strategy for distributing the

burden of the index.

In the second figure (Figure 4b), we see how the size

of the index varies with the percentage of noise in the

dataset. As expected, when the noise increases, the number

of possible candidate tuples increase (since there are more

variations of each attribute value in the pool). Without

sharding, we see that the size of the dataset increases. While

the increase in the size of the index is not as sharp as the

increase due to the size of the dataset, it is still significant.

Once again, we observe that as the number of shards is

increased, the size of the index in the shard reduces to a

much more manageable value.

While this architecture does solve the problem of the

index size, the disadvantage of using a 2-stage map-reduce

is that it requires a very large temporary disk-space to hold

the (T, (T*, score)) pair. Recall that this is the output of the

first Map-Reduce job.

VIII. EMPIRICAL EVALUATION

We quantitatively study the performance of BayesWipe
in both its modes — offline, and online, and compare it

against state-of-the-art CFD approaches. We used three real

datasets spanning two domains: used car data, and census

data. Among the used car datasets, we used a real dataset

crawled from cars.com to validate the error model against

real world noisy data. We also used a dataset with real

values from Google Base with synthetic noise to measure

how the precision and recall changes as the parameters of

the data and system are changed. The census dataset was

obtained from the UCI machine learning database [32]. We

present experiments on evaluating the approach in terms of

the effectiveness of data cleaning, efficiency and precision

of query rewriting.

A demo for the offline cleaning mode of BayesWipe can

be downloaded from http://bayeswipe.sushovan.de/.

A. Experiments

Offline Cleaning Evaluation: The first set of evaluations

shows the effectiveness of the offline cleaning mode. In

Figure 3a, we compare BayesWipe against CFDs [33].

The dotted line that shows the number of CFDs learned

from the noisy data quickly falls to zero, which is not

surprising: CFDs learning was designed with a clean training

dataset in mind. Further, the only constraints learned by

this algorithm are the ones that have not been violated in

the dataset — unless a tuple violates some CFD, it cannot

be cleaned. As a result, the CFD method cleans exactly

zero tuples independent of the noise percentage. On the

other hand, BayesWipe is able to clean between 20% to

40% of the incorrect values. It is interesting to note that

the percentage of tuples cleaned increases initially and then

slowly decreases, because for very low values of noise, there

aren’t enough errors for the system to learn a reliable error

model from; and at larger values of noise, the data source

model learned from the noisy data is of poorer quality.

While Figure 3a showed only percentages, in Figure 3b

we report the actual number of tuples cleaned in the dataset

along with the percentage cleaned. This curve shows that the

raw number of tuples cleaned always increases with higher

input noise percentages.

Setting γ: As explained in Section V-A1, the weight given

to the edit distance (δ) compared to the weight given to

the distributional similarity (1 − δ); and the overcorrection

parameter (γ) are parameters that can be tuned, and should

be set based on which kind of error is more likely to occur.

In our experiments, we performed a grid search to determine

the best values of δ and γ to use. In Figure 3c, we show a

portion of the grid search where δ = 2/5, and varying γ.

The “values corrected” data points in the graph correspond

to the number of erroneous attribute values that the algorithm

successfully corrected (when checked against the ground

truth). The “false positives” are the number of legitimate

values that the algorithm changes to an erroneous value.

When cleaning the data, our algorithm chooses a candidate

tuple based on both the prior of the candidate as well as the

.85

.90

.95

1.00

.01 .03 .05 .07 .09 .11 .13

P
re

ci
si

o
n

Recall

SQL Select Query

BayesWipe Online

Query Processing

(a) Average precision vs recall

900

920

940

960

980

1000

1 2 3 4 5 10 15 20 25 30 35
Noise %

BW BW-exp SQL Ground truth

(b) Net improvement in data
quality (TP-FP)

Figure 5: Online mode of BayesWipe

likelihood of the correction given the evidence. Low values

of γ give a higher weight to the prior than the likelihood,

allowing tuples to be changed more easily to candidates with

high prior. The “overall gain” in the number of clean values

is calculated as the difference of clean values between the

output and input of the algorithm.

If we set the parameter values too low, we will correct

most wrong tuples in the input dataset, but we will also

‘overcorrect’ a larger number of tuples. If the parameters are

set too high, then the system will not correct many errors

— but the number of ‘overcorrections’ will also be lower.

Based on these experiments, we picked a parameter value

of δ = 0.638, γ = 5.8 and kept it constant throughout.

Online Query Processing: While in the offline mode, we

had the luxury of changing the tuples in the database itself,

in online query processing, we use query rewriting to obtain

a resultset that is similar to the offline results, without

modification to the database. We consider a SQL select

query system as our baseline. We evaluate the precision and

recall of our method against the ground truth and compare

it with the baseline, using randomly generated queries.

We issued randomly generated queries to both Bayes-
Wipe and the baseline system. Figure 5a shows the average

precision over 10 queries at various recall values. It shows

that our system outperforms the SQL select query system

in top-k precision, especially since our system considers the

relevance of the results when ranking them. On the other

hand, the SQL search approach is oblivious to ranking and

returns all tuples that satisfy the user query. Thus it may

return irrelevant tuples early on, leading to less precision.

Figure 5b shows the improvement in the absolute numbers

of tuples returned by the BayesWipe system. The graph

shows the number of true positive tuples returned (tuples

that match the query results from the ground truth) minus

the number of false positives (tuples that are returned but

do not appear in the ground truth result set). We also

plot the number of true positive results from the ground

truth, which is the theoretical maximum that any algorithm

can achieve. The graph shows that the BayesWipe system

outperforms the SQL query system at nearly every level of

noise. Further, the graph also illustrates that — compared

to a SQL query baseline — BayesWipe closes the gap to

the maximum possible number of tuples to a large extent. In

addition to showing the performance of BayesWipe against

0

100

200

300

400

500

600

5k 10k 15k 20k 25k 30k

T
im

e
 T

a
k

e
n

 (
s)

Number of tuples

census-offline

car-offline

(a) Time taken vs number of
tuples in offline mode

0

200

400

600

800

1000

0 10 20 30 40

T
im

e
 t

a
k

e
n

 (
s)

Percentage of noise

census

car

(b) Time taken vs noise per-
centage in offline mode

0

50

100

150

5k 10k 15k 20k 25k 30k

T
im

e
 T

a
k

e
n

 (
s)

Number of tuples

car-online

census-online

(c) Time taken vs number of
tuples in online mode

0

50

100

150

0 10 20 30 40

T
im

e
 t

a
k

e
n

 (
s)

Percentage of noise

car-online

census-online

(d) Time taken vs noise per-
centage in online mode

Figure 6: Performance evaluations

the SQL query baseline, we also show the performance

of BayesWipe without the query relaxation part (called

BW-exp4). We can see that the full BayesWipe system

outperforms the BW-exp system significantly, showing that

query relaxation plays an important role in bringing relevant

tuples to the resultset, especially for higher values of noise.

This shows that our proposed query ranking strategy

indeed captures the expected relevance of the to-be-retrieved

tuples, and the query rewriting module is able to generate

the highly ranked queries.

Efficiency: In Figure 6 we show the time taken by the

system in its various modes. The first two graphs show the

offline mode, and the second two show the online mode.

As can be seen from the graphs, BayesWipe performs

reasonably well both in datasets of large size and datasets

with large noise. The offline modes show that the time taken

increases as

Evaluation on real data with naturally occurring errors:

In this section we used a dataset of 1.2 million tuples crawled

from the cars.com website5 to check the performance of

the system with real-world data, where the corruptions were

not synthetically introduced. Since this data is large, and

the noise is completely naturally occurring, we do not have

ground truth for this data. To evaluate this system, we con-

ducted an experiment on Amazon Mechanical Turk. First, we

ran the offline mode of BayesWipe on the entire database.

We then picked only those tuples that were changed during

the cleaning, and then created an interface in mechanical turk

where only those tuples were shown to the user in random

order. Due to resource constraints, the experiment was run

with the first 200 tuples that the system found to be unclean.

We inserted 3 known answers into the questionnaire, and

removed any responses that failed to annotate at least 2 out

of the 3 answers correctly.

An example is shown in Figure 7. The turker is presented

with two cars, and she does not know which of the cars

was originally present in the dirty dataset, and which one

was produced by BayesWipe. The turker will use her own

domain knowledge, or perform a web search and discover

that a Mazda CX-9 touring is only available in a 3.7l

4BW-exp stands for BayesWipe-expanded, since the only query rewrit-
ing operation done is query expansion.

5http://www.cars.com

Confidence BayesWipe Original

High confidence only 56.3% 43.6%

All confidence values 53.3% 46.7%

Table I: Results of the Mechanical Turk Experiment, show-

ing the percentage of tuples for which the users picked the

results obtained by BayesWipe as against the original tuple.

... make model cartype fueltype engine transmission drivetrain doors wheelbase

Car: mazda cx-9 touring suv gasoline 3.5l v6 24v mpfi dohc 6-speed automatic fwd 4 113"

Car: mazda cx-9 touring suv gasoline 3.7l v6 24v mpfi dohc 6-speed automatic fwd 4 113"

 First is correct

 Second is correct

How confident are you about your selection?

 Very confident Confident Slightly Confident Slightly Unsure Totally Unsure

Figure 7: A fragment of the questionnaire provided to the

Mechanical Turk workers.

engine, not a 3.5l. Then the turker will be able to declare

the second tuple as the correct option with high confidence.

The results of this experiment are shown in Table I.

As we can see, the users consistently picked the tuples

cleaned by BayesWipe more favorably compared to the

original dirty tuples, proving that it is indeed effective in

real-world datasets. Notice that it is not trivial to obtain

a 56% rate of success in these experiments. Finding a

tuple which convinces the turkers that it is better than the

original requires searching through a huge space of possible

corrections. An algorithm that picks a possible correction

randomly from this space is likely to get a near 0% accuracy.

The first row of Table I shows the fraction of tuples for

which the turkers picked the version cleaned by BayesWipe
and indicated that they were either ‘very confident’ or

‘confident’. The second row shows the fraction of tuples for

all turker confidence values, and therefore is a less reliable

indicator of success.

IX. CONCLUSION

In this paper we presented a novel system, BayesWipe
that works using end-to-end probabilistic semantics, and

without access to clean master data. We showed how to

effectively learn the data source model as a Bayes net-

work, and how to model the error as a mixture of error

features. We showed the operation of this system in two

modalities: (1) offline data cleaning, an in situ rectification

of data and (2) online query processing mode, a highly

efficient way to obtain clean query results over inconsistent

data. We empirically showed that BayesWipe outperformed

existing baseline techniques in quality of results, and was

highly efficient. We also showed the performance of the

BayesWipe system at various stages of the query rewriting

operation. User experiments showed that the system is

useful in cleaning real-world noisy data. In future work,

we will implement the system on a distributed architecture

(like map-reduce), since many of the algorithms are easily

parallelizable.

ACKNOWLEDGMENTS

We thank Dr. K. Selçuk Candan for his valuable advice,

and Preet Inder Singh Rihan for his help with probabilistic

databases. This research is supported in part by the ONR

grants N00014-13-1-0176, N0014-13-1-0519, ARO grant

W911NF-13-1-0023 and a Google Research Grant.

REFERENCES

[1] W. Fan and F. Geerts, “Foundations of data quality manage-
ment,” Synthesis Lectures on Data Management, vol. 4, no. 5,
pp. 1–217, 2012.

[2] P. Gray, “Before Big Data, clean data,” 2013.
[Online]. Available: http://www.techrepublic.com/blog/big-
data-analytics/before-big-data-clean-data/

[3] H. Leslie, “Health data quality – a
two-edged sword,” 2010. [Online]. Avail-
able: http://omowizard.wordpress.com/2010/02/21/health-
data-quality-a-two-edged-sword/

[4] Computing Research Association, “Chal-
lenges and opportunities with big data,”
http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf, 2012.

[5] E. Knorr, R. Ng, and V. Tucakov, “Distance-based outliers:
algorithms and applications,” The VLDB Journal, vol. 8, no. 3,
pp. 237–253, 2000.

[6] H. Xiong, G. Pandey, M. Steinbach, and V. Kumar, “Enhanc-
ing data analysis with noise removal,” TKDE, vol. 18, no. 3,
pp. 304–319, 2006.

[7] P. Singla and P. Domingos, “Entity resolution with markov
logic,” in ICDM. IEEE, 2006, pp. 572–582.

[8] I. Fellegi and D. Holt, “A systematic approach to automatic
edit and imputation,” J. American Statistical association, pp.
17–35, 1976.

[9] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-
based model and effective heuristic for repairing constraints
by value modification,” in SIGMOD. ACM, 2005.

[10] W. Fan, F. Geerts, L. Lakshmanan, and M. Xiong, “Discov-
ering conditional functional dependencies,” in ICDE. IEEE,
2009.

[11] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan, “Data
cleaning and query answering with matching dependencies
and matching functions,” in ICDT, 2011.

[12] A. Fuxman, E. Fazli, and R. J. Miller, “Conquer: Efficient
management of inconsistent databases,” in SIGMOD. ACM,
2005, pp. 155–166.

[13] S. De, “Unsupervised bayesian data cleaning techniques for
structured data,” Ph.D. dissertation, ARIZONA STATE UNI-
VERSITY, 2014.

[14] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsi-
etsidis, “Conditional functional dependencies for data clean-
ing,” in ICDE. IEEE, 2007, pp. 746–755.

[15] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang, “Nadeef: A commodity data
cleaning system,” SIGMOD, 2013.

[16] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query
answers in inconsistent databases,” in PODS. ACM, 1999,
pp. 68–79.

[17] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving
data quality: Consistency and accuracy,” in VLDB. VLDB
Endowment, 2007, pp. 315–326.

[18] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas, “Guided data repair,” VLDB, vol. 4, no. 5, pp.
279–289, 2011.

[19] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin, “Sampling
from repairs of conditional functional dependency violations,”
The VLDB Journal, pp. 1–26, 2013.

[20] Y. Cao, W. Fan, and W. Yu, “Determining the relative
accuracy of attributes,” in SIGMOD. New York, NY,
USA: ACM, 2013, pp. 565–576. [Online]. Available:
http://doi.acm.org/10.1145/2463676.2465309

[21] F. Chiang and R. J. Miller, “A unified model for data and
constraint repair,” in ICDE. IEEE, 2011, pp. 446–457.

[22] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin, “On
the relative trust between inconsistent data and inaccurate
constraints,” in ICDE. IEEE, 2013.

[23] G. Wolf, A. Kalavagattu, H. Khatri, R. Balakrishnan,
B. Chokshi, J. Fan, Y. Chen, and S. Kambhampati, “Query
processing over incomplete autonomous databases: query
rewriting using learned data dependencies,” The VLDB Jour-
nal, 2009.

[24] P. G. Kolaitis, E. Pema, and W.-C. Tan, “Efficient querying
of inconsistent databases with binary integer programming,”
Proceedings of VLDB, vol. 6, no. 6, 2013.

[25] A. Hartemink., “Banjo: Bayesian network inference with java
objects.” http://www.cs.duke.edu/ amink/software/banjo.

[26] S. Russell and P. Norvig, Artificial intelligence: a modern
approach. Prentice Hall, 2010.

[27] T. Minka, W. J.M., J. Guiver, and D. Knowles,
“Infer.NET 2.4,” 2010, microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[28] E. Ristad and P. Yianilos, “Learning string-edit distance,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, 1998.

[29] M. Li, Y. Zhang, M. Zhu, and M. Zhou, “Exploring distribu-
tional similarity based models for query spelling correction,”
in ICCL. Association for Computational Linguistics, 2006,
pp. 1025–1032.

[30] A. Berger, V. Pietra, and S. Pietra, “A maximum entropy
approach to natural language processing,” Computational
linguistics, 1996.

[31] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers,
1988.

[32] A. Asuncion and D. Newman, “UCI machine learning repos-
itory,” 2007.

[33] F. Chiang and R. Miller, “Discovering data quality rules,”
Proceedings of the VLDB Endowment, 2008.

